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ABSTRACT

Originally, mathematical morphology was a theory of signal transformations which are invariant under Euclidean
translations. An interest in the extension of mathematical morphology to spatially-variant (SV) operators has
emerged due to the requirements imposed by numerous applications in adaptive signal (image) processing. This
paper presents a general theory of spatially-variant mathematical morphology in the Euclidean space. We define
the binary and gray-level spatially-variant basic morphological operators (i.e., erosion, dilation, opening and
closing) and study their properties. We subsequently derive kernel representations for a large class of binary
and gray-level SV operators in terms of the basic SV morphological operators. The theory of SV mathematical
morphology is used to extend and analyze two important image processing applications: morphological image
restoration and skeleton representation of binary images. For morphological image restoration, we obtain new
realizations of adaptive median filters in terms of the basic SV morphological operators. For skeleton represen-
tation, we develop an algorithm to construct the optimal structuring elements, in the sense of minimizing the
cardinality of the spatially-variant morphological skeleton representation. Experimental results show the power of
the proposed theory of spatially-variant mathematical morphology in practical image processing applications.

Keywords: Spatially-Variant Mathematical Morphology, Spatially-variant homomorphism theorem, Kernel rep-
resentation, Adaptive median filter, Spatially-Variant skeleton representation.

1. INTRODUCTION

Since first introduced by Matheron and Serra1 2 3 in the 70’s, mathematical morphology theory has found
numerous applications in signal and image processing, which include biomedical image processing,4 shape
recognition and analysis,5 coding and compression,6 automated industrial inspection,7 texture analysis,8

radar imagery,9 astronomical imaging,10 multiresolution techniques and scale-spaces.11 Despite the diversity
of purposes, the above applications have a common goal: extract shape information from images.

Mathematical morphology in its original form is a set-theoretic approach to image analysis which investigates
the geometrical structure of images. Morphological image transformations have an intuitive geometrical inter-
pretation and can be represented by two elementary operators2 12 ∗: erosions and dilations. This enables the
implementation of efficient and low-complexity algorithms of the transformations.13 To examine the geometrical
structure of an image, a small pattern, called structuring element, is translated over the image to extract useful
information. Therefore, morphological operators are invariant under translations.

Translation-invariant transformations are not appropriate for many applications in image processing. For
instance, in the analysis of images from traffic control cameras, vehicles at the bottom of the image are closer
to the camera and thus appear larger than vehicles higher in the image.14 Therefore, the structuring element
should vary linearly with the vertical position in the image in order to detect and extract vehicles from the
image. Another example arises in adaptive smoothing of noisy signals, which consists of removing the noise
while preserving the image features. This can be achieved by varying the filtering scales (i.e., the structuring
elements) with respect to spatial positions in the image15 16 .17

Several methods for the extension of mathematical morphology have consequently been proposed to spatially-
variant operators restricted by various rigid algebraic constructions such as circular morphology18 and affine
morphology.19 Roedrink constructed and studied morphological operators which are invariant under more

∗We will use operator, transformation, and system interchangeably to denote a signal-to-signal transformation.



general non-commutative groups, such as the projective group and the motion group.20 A unified theory of
spatially-variant mathematical morphology requires nonetheless a further abstraction of the basic notions of
mathematical morphology. Lattice morphology, introduced by Serra1 and pursued by Heijmans and Ronse,18 21

is a powerful tool to the analysis of an abstraction of mathematical morphology based on lattice theory, a topic
devoted to the investigation of the algebraic properties of partially-ordered sets.22 A fundamental result in lattice
morphology that provides for the representation of a large class of nonlinear operators in terms of lattice erosions
and dilations has been presented in.23 This representation however does not posses the geometrical interpretation
captured by the structuring element that is crucial in signal and image processing applications. Motivated by
practical applications, Serra1 introduced the concept of a structuring function in the Euclidean space, which
associates to each point in space a local structuring element. This work was pursued by Chefchaouni and
Schonfeld in24 .25 The latter approach, despite its restriction to the Euclidean space, preserves the geometrical
concept of the structuring element that is essential in practical implementation of morphological operators in
software and hardware.

In this paper, we provide a formal framework for the theory of spatially-variant mathematical morphology in
the Euclidean space. Particularly, we construct the binary (two-level) and gray-level (multi-level) basic spatially-
variant morphological operators (i.e., erosion and dilation) and study their properties. We subsequently derive
a kernel representation for a large class of binary and gray-level spatially-variant (non necessarily translation-
invariant) signal transformations. The proposed theory of spatially-variant mathematical morphology is used to
extend and analyze two important image processing applications: morphological image restoration and morpho-
logical skeleton representation.

2. PRELIMINARIES

A binary (two-level valued) signal or image can be represented as a set. For example, consider a digital binary
image I taking values 0 or 1. The set A = {x ∈ Z

2 : I(x) = 1} uniquely characterizes the image I. A gray-
level (multi-level valued) signal can be represented by a function. The support of such a function is defined
as Spt(f) = {x : f(x) �= −∞}. A binary operator is a transformation that maps a set to a set. A gray-level
operator is a transformation that maps a function to a function.

In the binary case, we consider a non-empty set ξ. the power set of ξ is P(ξ). We use O = P(ξ)P(ξ) to
denote the set of all operators mapping P(ξ) into itself. Elements of the set P(ξ) will be denoted by upper-case
letters; e.g., A,B,C. An order on P(ξ) is imposed by the inclusion ⊆. We use ∪ and ∩ to denote the union
and intersection in P(ξ), respectively. Xc denotes the complement of X ∈ P(ξ). Elements of the set O will be
denoted by lower case Greek letters; e.g., α, β, γ. We shall restrict our attention to non-degenerate operators; i.e.,
α(X) �= ξ and α(X) �= ∅ for some X ∈ P(ξ) and α(∅) = ∅, for every α ∈ O ( the set ∅ ∈ P(ξ) is used to denote
the empty set). The operator ψ∗ ∈ O is the dual of the operator ψ ∈ O if and only if (iff) ψ∗(X) = (ψ(Xc))c,
for every X ∈ P(ξ). An operator ψ ∈ O is increasing iff X ⊆ Y =⇒ ψ(X) ⊆ ψ(Y ), for every X,Y ∈ P(ξ).

In the gray-level case, we consider functions from ξ = R
n or ξ = Z

n, for some n > 0, to T = Z or T = R. We
denote the set of functions from ξ to T by Func (ξ, T ). Elements of Func (ξ, T ) will be denoted by lower-case
letters; e.g., f, g. An order on Func (ξ, T ) is induced by the order on T ; that is f ≤ g ⇐⇒ f(x) ≤ g(x), for every
x ∈ ξ. The least and greatest elements of Func (ξ,T) are denoted by O and I; these are the functions identically
−∞ and +∞, respectively. ∨ and ∧ denote the supremum and infimum operations, respectively. If {fi}i∈I is
a family of functions in Func (ξ, T ), then (∨i∈Ifi)(x) = ∨i∈I{fi(x)} and (∧i∈Ifi)(x) = ∧i∈I{fi(x)}. Gray-level
operators will be denoted by upper-case Greek letters; e.g., Ψ,Φ. We consider only non-degenerate operators;
i.e., Ψ(f) �= O, Ψ(f) �= I, for some function f , Ψ(O) = O and Ψ(I) = I for every gray-level operator Ψ. The
dual operator Ψ∗ of a gray-level operator Ψ is defined as Ψ∗(f) = −Ψ(−f), for all f ∈ Func (ξ, T ).

3. SPATIALLY-VARIANT MORPHOLOGY

3.1. Spatially-Variant Binary Morphological Operators
The spatially-variant binary structuring element θ is a mapping from ξ to P(ξ), which associates to each point
in space x a local structuring element θ(x). We define the transposed mapping θ

′
as

θ′(y) = {z ∈ ξ : y ∈ θ(z)}, for every y ∈ ξ. (1)



In the translation invariant case, the mapping θ is the translation by a fixed set B, i.e., θ(x) = Bx, for every
x ∈ ξ. Then, we have y ∈ θ′

(x) ⇐⇒ x ∈ θ(y) ⇐⇒ x ∈ By ⇐⇒ y ∈ B̌x. Hence, the transposed mapping is the
translation by the reflected set B̌. The four basic spatially-variant (SV) binary operators are defined as

SV binary erosion: Eθ(X) = {z ∈ ξ : θ(z) ⊆ X} =
⋂
x∈Xc θ′c(x), for every X ∈ P(ξ),

SV binary dilation: Dθ(X) = {z ∈ ξ : θ
′
(z) ∩X �= ∅} =

⋃
x∈X θ(x), for every X ∈ P(ξ),

SV binary opening : Γθ(X) = Dθ(Eθ(X)) =
⋃
{θ(y) : θ(y) ⊆ X; y ∈ ξ},

SV binary closing : Φθ(X) = Eθ(Dθ(X)) = {z ∈ ξ : θ(y) ∩X �= ∅, for every θ(y) : z ∈ θ(y)}.

3.1.1. Properties of spatially-variant binary erosion and dilation

• Adjunction: Dθ(X) ⊆ Y ⇐⇒ X ⊆ Eθ(Y ),

• Duality : E∗θ = Dθ′ ,

• Increasing : If X ⊆ Y , then Eθ(X) ⊆ Eθ(Y ) and Dθ(X) ⊆ Dθ(Y ),

• If θ1 ⊆ θ2, then Eθ2 ⊆ Eθ1 and Dθ1 ⊆ Dθ2 .

3.1.2. Properties of spatially-variant binary opening and closing

• Duality : Γ∗
θ = Φθ′ ,

• Increasing : If X ⊆ Y , then Γθ(X) ⊆ Γθ(Y ) and Φθ(X) ⊆ Φθ(Y ),

• Idempotence: Γθ(Γθ) = Γθ and Φθ(Φθ) = Φθ,

• Extensivity and Anti-extensivity : Γθ(X) ⊆ X and X ⊆ Φθ(X).

Observe that the spatially-variant binary morphological operators satisfy the same properties as their translation-
invariant counterparts.

3.2. Spatially-Variant Gray-Level Morphological Operators

Spatially-variant binary morphological operators can be naturally extended to gray-level signals by means of the
umbra approach. The umbra of a function f , denoted as U [f ] is defined as

U [f ] = {(x, y) ∈ ξ × Z : y ≤ f(x)}. (2)

More generally, we call a set V ⊆ ξ× calT an umbra if (x, y) ∈ V ←→ (x, t) ∈ V, ∀ t ≤ y. Obviously, the umbra
of a function is an umbra. To any umbra V , we define its top surface, a function T [V ] : ξ → T , whose graph is
the upper envelope of V , i.e.

T [V ](x) = ∨{y ∈ Z : (x, y) ∈ U [f ]}. (3)

Clearly T [U [f ]] = f for any function f . However, we do not have in general V = U [T [V ]] for any umbra V . The
relation between umbras and functions is different in the two cases of discrete and continuous gray-levels.26 If the
gray-level space T = Z, then we have V = U [T [V ]] for any umbra V . Thus, there is a bijection between functions
and umbras where a function f and an umbra V correspond by the equivalent relation V = U [f ] ↔ f = T [V ].
If the gray-level space T = R, then the bijection between functions and umbras holds only for upper-semi-
continuous functions. A function f : ξ → R is said to be upper-semi-continuous (u.s.c.) if for every h ∈ ξ, we
have lim supx→h f(x) ≤ f(h) or equivalently if its umbra is closed in ξ×R. Observe that discrete domain functions
are trivially upper-semi-continuous. In the reminder of this paper, we will consider only upper-semi-continuous
functions. We denote by USC(ξ, T ) the set of upper-semi-continuous functions from ξ to T .



The spatially-variant structuring function Θ † is a mapping from ξ to USC (ξ, T ), which associates to
each point x a local structuring function Θ(x). We define the transposed structuring function mapping Θ′

as [Θ
′
(x)](u) = [Θ(u)](x) for all x, u ∈ ξ. In translation-invariant gray-level morphology, the mapping Θ is

the translation by a fixed structuring function g, i.e., [Θ(x)](u) = g(u − x) = g(u)x, for every x ∈ ξ. Then
[Θ

′
(u)](x) = [Θ(x)](u) = g(u − x), for every x ∈ ξ; that is [Θ

′
(u)] = ǧu, for every u ∈ ξ. Hence the transposed

mapping Θ
′
is the translation by the structuring function ǧ, where ǧ(x) = g(−x), for every x ∈ ξ. We define the

umbra structuring element ΘU as the following mapping

ΘU (x, y) = U [Θ(x) + y] = U [Θ(x)] + y. (4)

Consequently, the structuring elements in the space ξ × T are invariant along the vertical (gray-level) axis.
Proposition 1. For every umbra V , EΘU (V ) and DΘU (V ) are umbras.
Definition 1. The spatially-variant gray-level erosion is defined, for every f ∈ USC(ξ, T ), for every x ∈ ξ, as

[EΘ(f)](x) = T [EΘU (U [f ])](x) = ∧
u∈Spt(Θ(x))

{f(u)− [Θ(x)](u)} = ∨{v ∈ T : Θ(x) + v ≤ f}. (5)

Definition 2. The spatially-variant gray-level dilation is defined, for every f ∈ USC(ξ, T ), for every x ∈ ξ, as

[DΘ(f)](x) = T [DΘU (U [f ])](x) = ∨
u∈Spt(f)∩Spt(Θ′ (x))

{f(u) + [Θ
′
(x)](u)} = ∧{v ∈ T : −Θ′(x) + v ≥ f}. (6)

Observe that, except for T = Z, Definitions 1 and 2 do not necessarily imply that U [EΘ(f)] = EΘU (U [f ])
and U [DΘ(f)] = DΘU (U [f ]). A sufficient condition to ensure these relations is that EΘ(f) and DΘ(f) are
upper-semi-continuous functions or equivalently that EΘU (U [f ]) and DΘU (U [f ]) are closed umbras for every
upper-semi-continuous function f . Before stating the spatially-variant umbra homomorphism theorem, we need
the following definition. We say that the mapping Θ is sequentially continuous if for every sequence {xn}n∈N ∈ ξ
converging towards the point x ∈ ξ, the sequence of upper-semi-continuous functions {Θ(xn)}n∈N converges
towards the upper-semi-continuous function Θ(x) in the sense specified by Serra [p.429, Theorem XII-2].3

Spatially-Variant Umbra Homomorphism theorem 3. Let Θ : ξ → USC(ξ, T ) be a sequentially continu-
ous structuring function mapping. Then, for every f ∈ USC(ξ, T ),
(a) U [EΘ(f)] = EΘU (U [f ]).
(b) If the support of Θ′(x) is compact for every x ∈ ξ, then U [DΘ(f)] = DΘU (U [f ]).

The spatially-variant umbra homomorphism theorem states that, under the specified conditions, the opera-
tion of taking an umbra is a homomorphism from the SV gray-level morphology to the SV binary morphology.
Proposition 2. The spatially-variant gray-level pair (EΘ,DΘ) forms an adjunction, i.e.,

DΘ(f) ≤ g ⇐⇒ f ≤ EΘ(g), for every f, g ∈ USC(ξ). (7)

Proposition 1 implies in particular that EΘ is an erosion (commutes with the infimum) and that DΘ is a dilation
(commutes with the supremum).
Proposition 3. The spatially-variant gray-level erosion and dilation are dual operators, i.e., E∗Θ = DΘ′ .

Proposition 4. The spatially-variant gray-level erosion and dilation are increasing operators.
From Definitions 1 and 2, we can construct the SV opening and closing as follows
Definition 3. The spatially-variant gray-level opening is defined, for every f ∈ USC(ξ, T ), as

ΓΘ(f) = DΘ(EΘ(f)) = ΓΘ(f) = ∨{Θ(u) + v ≤ f ; (u, v) ∈ ξ × T }. (8)

Definition 4. The spatially-variant gray-level closing is defined, for every f ∈ USC(ξ, T ), as

ΦΘ(f) = EΘ(DΘ(f))(x) = ∧{Θ′(u) + v ≥ f ; (u, v) ∈ ξ × T }. (9)

Hence, the SV gray-level opening and closing have an intuitive geometric interpretation in the same manner
†Notice that we are using lower case letter θ to denote the spatially-variant structuring element mapping and upper

case letter Θ to denote the spatially-variant structuring function mapping.



Figure 1. 1-D Geometric Interpretation of SV gray-level opening using circular structuring element mapping

that there is a geometric meaning to the their translation-invariant counterparts. The SV gray-level opening of
a function f by the structuring function mapping Θ is obtained by sliding the local structuring functions Θ(x)
under the surface of f and taking the locus of the highest points reached by any part of Θ(x) as it slides. For
instance, Fig. 1 shows a 1-D example of SV gray-level opening using a circular structuring element mapping.
The SVFP closing has the dual interpretation, i.e., it is the locus of the lowest points reached by some parts of
the transposed local structuring functions Θ′(x) during the sliding on top of the surface of f . From Propositions
3 and 4, it follows that the SV opening and closing are increasing dual operators.
Proposition 5. The spatially-variant gray-level opening (resp. closing) is anti-extensive (resp. extensive), i.e.,

ΓΘ(f) ≤ f, and ΦΘ(f) ≥ f, for every f ∈ USC(ξ, T ). (10)

Proposition 6. The spatially-variant gray-level opening and closing are idempotent operators, i.e., for every
f ∈ USC(ξ, T ),

ΓΘ(ΓΘ(f)) = ΓΘ(f), and ΦΘ(ΦΘ(f)) = ΦΘ(f). (11)

4. SPATIALLY-VARIANT KERNEL REPRESENTATION

We extend the notion of the kernel to spatially-variant operators. Let ψ ∈ O be a spatially-variant operator,
then Ker (ψ) = {θ : z ∈ ψ(θ(z)), for every z ∈ ξ}. We extend Matheron’s kernel representation theorem as
follows
Theorem 4. Let ψ be an increasing spatially-variant binary operator ψ, which satisfies ψ(ξ) = ξ. Then, for
every X ∈ P(ξ),

ψ(X) =
⋃

θ∈Ker (ψ)

Eθ(X) =
⋂

θ∈Ker (ψ∗)

Dθ′ (X). (12)

Definition 5. A gray-level operator Ψ is a V-operator if and only if we have Ψ(f+y) = Ψ(f)+y, for every f ∈
Func (ξ, T ) and every y ∈ T .
For example, the spatially-variant gray-level erosion, dilation, opening and closing are V-operators. V-operators
have been extensively used in many adaptive filtering applications17 15 .16 They are invariant with respect to
DC biases and they have an intuitive geometric interpretation.

Let Ψ be a V-operator. We define the kernel K(Ψ) of Ψ to be the following collection of mappings: K(Ψ) =
{Θ : Ψ[Θ(x)](x) ≥ 0, for all x ∈ ξ}. We extend Maragos’ kernel representation theorem as follows
Theorem 5. Let Ψ be an increasing V-operator. Then, for every for every f ∈ USC(ξ, T ),

Ψ(f) = ∨
θ∈K(Ψ)

EΘ(f) = ∧
Θ∈K(Ψ∗)

DΘ′ (f). (13)

Theorems 3 and 4 demonstrate the ubiquity of the SV binary and gray-level morphological operators. Hence
the theory of SV mathematical morphology is very general and applies to all binary (resp. gray-level) operators
that share two properties: increasing, i.e., preserve a signal ordering, and fixing the entire space (resp. invariant



under gray-level translations). Moreover, such decompositions of non-linear operators in terms of elementary
ones allows fast and efficient implementations on digital computers, which explains the practical importance of
Theorems 3 and 4. For example, the industrial need in automated visual systems requires low-cost machine
vision modules, which can perform different complex image processing/analysis tasks based on a small set of
available simple operations. Given the parallelism and simple implementation of the SV erosion and dilation,
the representation theorems support a general purpose vision (software and hardware) module.

5. APPLICATIONS

5.1. Adaptive Median Filter

5.1.1. Theoretical Analysis

Consider ξ ⊆ Z
2. Let B be a mapping from ξ into P(ξ) such that y ∈ B(y) and |B(y)| = cardinality B(y) = n,

for every y ∈ ξ where n is odd. The spatially-variant or adaptive binary median filter is given by

med(X,B) = {y ∈ ξ : |X ∩B(y)| ≥ (n+ 1)/2}. (14)

The corresponding adaptive gray-level median filter is given by

[med(f,B)](x) = (n+ 1)/2 largest value of{f(y), y ∈ B(x)}. (15)

Proposition 7. The spatially-variant binary and gray-level median filters are increasing self-dual operators .

Moreover, we observe that med(ξ,B) = ξ and med(f,B) is a V-operator. Therefore, Theorems 4 and 5 apply,
respectively, to the adaptive binary median filter and to the adaptive gray-level median filter.
Proposition 8.

med(X,B) =
⋃

θ⊆B,|θ|=(|B|+1)/2

⋂

x∈Xc

θ′c(x) =
⋂

θ⊆B,|θ|=(|B|+1)/2)

⋃

x∈X
θ(x), (16)

for every X ∈ P(ξ), and

[med(f,B)](x) = ∨
θ⊆B,|θ|=(|B|+1)/2

[ ∧
u∈θ(x)

f(u)] = ∧
θ⊆B,|θ|=(|B|+1)/2

[ ∨
u∈θ(x)

f(u)], (17)

for every f ∈ Func(ξ, T ).
The implications of Eqs. (16) and (17) are profound because they enable us to express any adaptive median
filter in a closed formula involving only max-min (or union-intersection) operations. In particular, no sorting is
required. For small adaptive window sizes B, the kernel representation is more efficient than sorting schemes.12

5.1.2. Simulations

We assume a germ-grain degradation process Θ(•)2.27 The output Y of Θ(•) is given by

Y = Θ(X) = (X −N1) ∪N2, where Ni =
⋃

n=1,2,···
Ci,n + {xi,n}, i = 1, 2. (18)

In this case {Ci,n, n = 1, 2, · · · } is a sequence of sets, known as the primary grains, whereas {xi,n, n = 1, 2, · · · }
is a sequence of sites, known as the germs, which are randomly distributed in Z

2.

The idea of our implementation of the adaptive median filter is to select a local window with size slightly
larger than the noise structures. The degraded pixels are replaced by the median value computed in the local
window while the intact pixels are left unfiltered. Recall that a good adaptive filtering scheme should be able to
eliminate noise without oversmoothing the important features of signals. For each pixel x, detect if a noise-grain
C(x) is centered at x. If yes: Let B(x) = C(x) ⊕ S. Otherwise: B(x) = ∅. The detection of the presence of a
noise-grain C(x) centered at the pixel x is determined by selecting the largest possible grain C in the germ-grain
model given by (18) which is present or absent in the degraded image (i.e., C + {x} ⊆ Y or C + {x} ⊆ Y c).28



We consider the original image depicted in Fig. 2(a). Its corrupted version by a germ-grain noise model is
shown in Fig. 2(b). The germ-grains are randomly distributed squares of size 1, 3, 5 and 7. The noise grains
are allowed to overlap. Figures 2(c) - 2(e) show the output of translation-invariant median filtering with square
windows of sizes 5 × 5, 7 × 7 and 9 × 9, respectively. Observe that median filters with larger windows remove
more noise at the cost of oversmoothing the output image. This is a known trade-off between the noise removal
capability of translation-invariant median filters and their degree of smoothness of the original image. The
spatially-variant median filtering output is depicted in Figure 2(f). The SV median filter removes all germ-grain
noise while preserving the edges and the geometry of the original image. Table 1 displays the signal-to-noise
ratio (SNR) of the filtered images.

(a) (b) (c) (d) (e) (f)

Figure 2. Median filtering: a) Original image; b) Degraded image by a germ-grain noise model; c) Translation-invariant
median filtering using a fixed 5 × 5 square window; d) Translation-invariant median filtering using a fixed square 7 × 7
window; e) Translation-invariant median filtering using a fixed 9 × 9 square window; f) Adaptive median filtering.

Image SNR (dB)
(b) Degraded Image 9.37

(d) Translation-invariant median filtering using a fixed 5× 5 window 11.96
(e) Translation-invariant median filtering using a fixed 7× 7 window 13.08
(f) Translation-invariant median filtering using a fixed 9× 9 window 15.10

(g) Spatially-Variant median filtering 40

Table 1. Denoising using median filtering: SNR comparison

5.2. Spatially-Variant Morphological Skeleton Representation
The translation-invariant morphological skeleton has been investigated by many researchers3 29 30 31 mainly for
the purpose of image coding and shape recognition. An important subject in morphological skeleton decompo-
sition of binary images is the issue of minimal skeletons. In many applications of interest (e.g., image coding),
it is desirable to develop an image decomposition which contains the minimum possible number of points that
are sufficient for the exact reconstruction of the original image. In this section, we generalize the morphologi-
cal skeleton representation to the spatially-variant morphological skeleton representation. We also develop an
algorithm for its implementation, which minimizes the cardinality of the image representation.

5.2.1. Theoretical Analysis

Consider a sequence of mappings {Bn : n ≥ 0} from ξ into P(ξ) such that z ∈ Bn(z), for every z ∈ ξ, for
all n and Bn(z) �= {z}, for all n. Consider the sequence of mappings θn from ξ into P(ξ) given by θn+1(z) =⋃
t∈θ′n(z)Bn(t) = DBn

(θ′n(z)) for n > 0, z ∈ ξ and θ0(z) = {z}, for every z ∈ ξ. We define the integer NX by
NX = max{n : Eθn

(X) �= ∅} for a given X ∈ P(ξ).
Definition 6. Consider X ∈ P(ξ). The spatially-variant (SV) morphological skeleton representation R(X) of
X is given by

R(X) = {R0(X), R1(X), · · · , RNX
(X)}, (19)

where Rn(X) is the spatially-variant morphological skeleton representation subset of order n given by

Rn(X) = Eθn
(X)−DB′

n
(Eθn+1(X)), (20)



where − denotes the set difference.
Theorem 6. The SV morphological skeleton representation is invertible. We have, for every X ∈ P(ξ),

X = R−1(R(X)) =
NX⋃

n=0

Dθn
(Rn(X)). (21)

5.2.2. Algorithmic Analysis

Given a binary image X, the transformation R(•) results in the representation R(X) , which is a compressed
version of image X. The representation R(X) usually sustains additional processing determined by the desired
application; e.g., coding and decoding for the transmission of R(X) over a communication channel. In the
remainder of this section, we assume that the channel is noiseless. Therefore, the receiver will be able to
reconstruct the original image perfectly without error by using the inverse transformation R−1(•).

Our goal is to construct the optimal structuring elements, which result in a minimum representation of the SV
morphological skeleton. Given a binary image X, the trivial solution for the optimal structuring element would
be the image itself. The translation-invariant and spatially-variant morphological skeleton representations would
be identical and consist of 1 point. However, this is not a practical solution since it assumes that the image
in known before its reconstruction from its morphological skeleton representation. We will therefore assume
a known fixed library of structuring elements and construct the optimal spatially-variant structuring element
mapping to minimize the cardinality of the morphological skeleton representation. Let X denote the original
image and B a given structuring element. Table 2 describes an algorithm to construct the optimal structuring
elements for the spatially-variant morphological skeleton representation. The algorithm is an iterative process.
At each iteration, the algorithm selects the center of the dilated structuring element NB = B ⊕ · · · ⊕ B (N
times) that maximally intersects the image, for some integer N . The union of these center points constitutes
the SV morphological skeleton representation. The exact reconstruction of the original image is guaranteed
given the set of center points and their corresponding integers N . The resulting spatially-variant morphological
skeleton representation is compact, in the sense that the set {(zi, Ni), i = 0, · · · , k} is not redundant; i.e., the
reconstruction based on any partial subset of the resulting SV morphological skeleton representation would form
a strict subset of the original image. The translation-invariant and spatially-variant morphological skeleton

(a) (b) 162 points (c) 502 points

Figure 3. Morphological skeleton representation: (a) Original image; (b) SV morphological skeleton representation (162
points); (c) Translation-invariant morphological skeleton representation (502 points).

representations are shown in Figs. 3(b) and 3(c), respectively. The cardinality of the SV morphological skeleton
representation is less than one third than that of its translation-invariant counterpart.

6. CONCLUSION

In this paper, we presented a general theory of spatially-variant mathematical morphology (SVMM) and showed
its enormous potential through two important image processing applications: adaptive median filters for mor-
phological restoration of noisy images and SV morphological skeleton representation. The proposed theory
preserves the geometrical notion of the structuring function, which is inherent in translation-invariant morphol-
ogy. We derived the spatially-variant umbra homomorphism theorem, which states that the umbra operation is a



Table 2. An algorithm to construct the optimal structuring elements for the spatially-variant morphological skeleton
representation.

Given a binary image X, do the following:
1. Choose N0 = max{n : X � nB �= ∅}.
2. Let Xe = X �N0B.
3. Choose z0 ∈ Xe such that |{z0} ⊕N0B| is maximal.
4. Let X

′
= X − {z0} ⊕N0B.

5. Store the value of z0 and N0. Let MN0 = 0; k = 0;
6. While (X

′ �= ∅) do the following:
a. M = 0;N = N0; k = k + 1;
b. While(|NB| > M & N ≥ 0)
−N = N − 1
− Let Xe = X �NB
− Choose zN ∈ Xe such that |({zN} ⊕NB)∩X ′ | is maximal
− Let MN = |({zN} ⊕NB) ∩X ′ |
− M = maxn=N0···N Mn

− Temporarily store zN
c. Store zk and Nk : |({zk} ⊕NkB) ∩X ′ | = M and empty the temporarily stored zN ’s.
d. Let X

′
= X

′ − {zk} ⊕NkB
The SV morphological skeleton representation is then given by R(X) =

⋃k
i=0{zi}.

The reconstructed image is X =
⋃k
i=0{zi} ⊕NiB.

homomorphism between SV binary morphology and SV gray-level morphology. In the first application, we inves-
tigated the relation between adaptive median filters and the basic SV morphological operators (i.e., SV erosion
and dilation). Simulation results showed that the adaptive median filter removes the noise while preserving the
important features of the original image. In the second application, we generalized the morphological skeleton
representation to the SV morphological skeleton representation. We have also developed an algorithm for optimal
selection of the spatially-variant structuring element mapping, which results in the minimum cardinality of the
SV morphological skeleton representation. As a result of this investigation, we have complemented the elegant
theory of spatially-variant mathematical morphology with powerful practical algorithms for image processing
applications.

7. APPENDIX

Proof of Proposition 1. Let V be an umbra. Suppose (x, y) ∈ EΘU (V ). Let w ≤ y. We show that
(x,w) ∈ EΘU (V ). By definition of the SV binary erosion, we have

(x, y) ∈ EΘU (V )⇐⇒ ΘU (x, y) ⊆ V ⇐⇒ U [Θ(x)] + w ⊆ U [Θ(x)] + y ⊆ V ⇐⇒ (x,w) ∈ EΘU (V ).

A similar argument can be used to derive that DΘU (V ) is an umbra.
Proof of the umbra homomorphism theorem a) It suffices to show that the umbra EΘU (U [f ]) is closed
for every f ∈ USC(ξ, T ). Let {zn = (xn, yn)}n∈N be a sequence in EΘU (U [f ]) converging towards z = (x, y). In
other words, we have xn → x (i.e., limn→∞ xn = x) and yn → y. We need to show that (x, y) ∈ EΘU (U [f ]). We
have

(xn, yn) ∈ EΘU (U [f ]) ⇐⇒ ΘU (xn, yn) ⊆ U [f ], ∀n⇐⇒ U [Θ(xn) + yn] ⊆ U [f ], ∀n.

Since Θ is sequentially continuous and Θ(x) is u.s.c., ∀x ∈ ξ, we have Θ(xn) → Θ(x) in the sense specified by
Serra in [Thorem XII-2, p. 429].3 So, Θ(xn) + yn → Θ(x) + y. Since the spaces USC(ξ, T ) and the space
of umbras in ξ × T are homeomorphic,32 an u.s.c. sequence of functions {gn} converges towards g iff the se-
quence of its umbras {U [gn]} converges towards U [g]. Therefore, we have U [Θ(xn)] + yn → U [Θ(x)] + y. Since



U [Θ(xn) + yn] ⊆ U [f ], ∀n and U [f ] is closed, we have from [Corollary 3]2 that U [Θ(x) + y] ⊆ U [f ], which is
equivalent to (x, y) ∈ EΘ(U [f ]).
b) Similarly, it suffices to show that the umbra DΘU (U [f ]) is closed for every f ∈ USC(ξ, T ). Let {zn =
(xn, yn)}n∈N be a sequence in DΘU (U [f ]) converging towards z = (x, y). We need to show that (x, y) ∈
DΘU (U [f ]). We have

(xn, yn) ∈ DΘU (U [f ])⇐⇒ ΘU ′
(xn, yn) ∩ U [f ] �= ∅

⇐⇒ ∃(an, bn) ∈ ΘU ′
(xn, yn) ∩ U [f ], ∀n⇐⇒ (an, bn) ∈ U [f ] and [Θ′(xn)](an) + bn ≥ yn. (22)

Let Kn = Spt(Θ′(xn)). By hypothesis, Kn is compact for all n. Moreover, since Θ′ is sequentially continuous,
Kn converges to K = Spt(Θ′(x)) in the sense specified in [Theorem 1-4-1, p. 13].2 Therefore, there exists a
compact set K0 such that K0 ⊇ Kn for all n. Since an ∈ Kn ⊆ K0, there exists a convergent subsequence
ank
→ a. By Theorem [Theorem 1-2-2, p. 6],2 we have a ∈ K. From the fact that Θ is sequentially convergent,

we have Θ(ank
)→ Θ(a). We have xnk

→ x. So, from [Theorem XII-2],3 we have

lim sup[Θ(ank
)](xnk

) ≤ [Θ(a)](x). (23)

Since f is u.s.c. we have
lim sup f(ank

) ≤ f(a) (24)

From Eq. (22), we have yn − [Θ(an)](xn) ≤ bn ≤ f(an),∀n. In particular, ynk
− [Θ(ank

)](xnk
) ≤ bnk

≤ f(ank
).

So
lim sup(ynk

− [Θ(ank
)](xnk

)) ≤ lim sup bnk
≤ lim sup f(ank

) (25)

since lim sup of a sequence of real or integer numbers always exists. Let b = lim sup bnk
. Combining Eqs. (23),

(25) and (24), we have
y − [Θ(a)](x) ≤ b ≤ f(a). (26)

So (a, b) ∈ U [f ] and [Θ(a)](x) + b ≥ y ⇐⇒ (x, y) ∈ ΘU (a, b) ⇐⇒ (a, b) ∈ ΘU ′
(x, y). Finally, (a, b) ∈ U [f ] ∩

ΘU ′
(x, y)⇐⇒ (x, y) ∈ DΘU (U [f ]).

Proof of Proposition 2.

DΘ(f) ≤ g ⇐⇒ ∀x ∈ ξ,∨u∈ξ{f(u) + [Θ(u)](x)} ≤ g(x)⇐⇒ ∀x, u ∈ ξ, f(u) + [Θ(u)](x) ≤ g(x)
⇐⇒ ∀x, u ∈ ξ, f(u) ≤ g(x)− [Θ(u)](x)⇐⇒ ∀u ∈ ξ, f(u) ≤ ∧x∈ξ{g(x)− [Θ(u)](x)} ⇐⇒ f ≤ EΘ.

Proof of Proposition 3. Consider f ∈ USC(ξ, T ). We have, for all x ∈ ξ,

[E∗Θ(f)](x) = [−EΘ(−f)](x) = − ∧u∈ξ {−f(u)− [Θ(x)](u)} = ∨u∈ξ{f(u) + [Θ(x)](u)} = [DΘ′ (f)](x).

This is true for every f ∈ USC(ξ). Hence, E∗Θ = DΘ′ .
Proof of Proposition 4. the proof follows immediately from Definitions 1 and 2.
Proof of Proposition 5. The proof follows immediately from Definitions 4 and 5.
Proof of Proposition 6. Consider f ∈ USC(ξ, T ). From the definition of the SV gray-level opening and the
umbra homomorphism theorem, we have

ΓΘ[ΓΘ(f)] = T [DΘU [EΘU (U [ΓΘ(f)])]] = T [DΘU [EΘU (ΓΘU (U [f ]))]] = T [ΓΘU (ΓΘU (U [f ]))] = T [ΓΘU (U [f ])] = ΓΘ(f)

A similar argument can be used to prove the idempotence of the SV gray-level closing.
Proof of Theorem 2. Consider an increasing V-operator Ψ. Let f ∈ USC(ξ, T ). Let f

′
= ∨Θ∈K(Ψ) EΘ(f).

We show that [Ψ(f)](x) ≥ t =⇒ f
′
(x) ≥ t, for some t ∈ T . Consider the mapping Θf given by

Θf (x) =
{
f − t, if [Ψ(f)](x) ≥ t;
I, Otherwise. (27)

Then

Ψ(Θf (x)) =
{
ψ(f)− t, if [Ψ(f)](x) ≥ t;
I, Otherwise. (28)



[Ψ(Θf (x))](x) ≥ 0, for every x ∈ ξ. Thus Θf ∈ K(Ψ). Assume that [Ψ(f)](x) ≥ t, for some x ∈ ξ. Then
Θf (x) = f − t. So, [EΘf

(f)](x) = ∨{v : Θf (x) + v ≤ f} ≥ t since t ∈ {v : Θf (x) + v ≤ f}. Hence,
f

′
(x) = ∨Θ∈K (Ψ) EΘ(f)(x) ≥ t.

Conversely, we show that f
′
(x) > t =⇒ [Ψ(f)](x) ≥ t. We have

f
′
(x) > t ⇐⇒ ∨

Θ∈K (Ψ)
EΘ(f)(x) > t =⇒ ∃Θ ∈ K(Ψ) : EΘ(f)(x) ≥ t⇐⇒ ∃Θ ∈ K(Ψ) : ∧u{f(u)− [Θ(x)](u)} ≥ t

=⇒ ∃Θ ∈ K(Ψ) : f −Θ(x) ≥ t =⇒ ∃Θ ∈ K(Ψ) : Ψ(f) ≥ t+ Ψ(Θ(x)).

Since Θ ∈ K(Ψ), we have Ψ[Θ(x)](x) ≥ 0. So, Ψ(f)(x) ≥ t.
Finally, we have showed that {x : [Ψ(f)](x) ≥ t} = {x : f

′
(x) ≥ t}, for every t ∈ T , i.e., Ψ(f) and f ′ have the

same cross-sections. This implies that Ψ(f) = f
′
. This establishes the proof that a function-processing system

is an increasing V-system iff it is the supremum of erosions by mappings in its kernel. The dual representation
in terms of SV gray-level erosions follows easily by duality.
Proof of Proposition 7. Consider X,Y ∈ P(ξ) such that X ⊆ Y . Let r = (n+1)/2. Then z ∈ med(X,B)⇐⇒
|X ∩ B(z)| ≥ r. Since, X ∩ B(z) ⊆ Y ∩ B(z), we have r ≤ |X ∩ B(z)| ≤ |Y ∩ B(z)|. Hence z ∈ med(Y,B). So
med(X,B) ⊆ med(Y,B). Thus the spatially-variant binary median is an increasing operator.
The dual of the adaptive binary median filter is

med∗(X,B) = (med(Xc, B))c = {y : |Xc ∩B(y)| < (n+ 1)/2} = {y : |X ∩B(y)| ≥ (n+ 1)/2} = med(X,B).

Similar arguments can be used to derive the increasing and self-duality of the SV gray-level median filter.
Proof of Proposition 8. Let medB = med(•, B). Ker(medB) = {θ : |θ(z) ∩ B(z)| ≥ (n + 1)/2, for every z ∈
ξ}. Let A be the

(
n

n+1
2

)
subsets of B of cardinality (n + 1)/2. We have A ⊆ Ker(medB). So,

⋃
θ∈A Eθ ⊆⋃

θ∈Ker(medB) Eθ. On the other hand, for each θ ∈ Ker(medB), there exists θ0 ∈ A such that θ0 ⊆ θ. So
Eθ ⊆ Eθ0 . So,

⋃
θ∈Ker(medB) Eθ ⊆

⋃
θ∈A Eθ. Finally, we have

⋃
θ∈Ker(medB) Eθ =

⋃
θ∈A Eθ. The representation of

the adaptive binary median filter as intersection of dilations by the transposed mappings in A follows by duality.
Similar arguments can be used to derive the kernel representation of the SV gray-level adaptive median filter.
Proof of Theorem 6. From the definition of the SV skeleton representation, we have Eθn

= Rn ∪ DB′
n
(Eθn+1)

Let Υn = Γθn
(X). Applying Dθn

to the latter equation, we obtain

Υn = Dθn
(Rn(X)) ∪ Dθn

DB′
n
Eθn+1 = Dθn

(Rn(X)) ∪ DDBn (θ′n)Eθn+1 = Dθn
(Rn(X)) ∪ Dθn+1Eθn+1

= Dθn
(Rn(X)) ∪Υn+1. (29)

Observe that ΥNX+1 = ∅. By iterating Eq. (29) for n = 0, 1, · · · , NX , we obtain Υ0 =
⋃NX

n=0Dθn
(Rn(X)).

Observe that Υ0 = Γθ0(X) = X. Therefore, we obtain the theorem.
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